Cargando…
Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal
The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomp...
Autores principales: | Roy, Vandana, Shukla, Shailja, Shukla, Piyush Kumar, Rawat, Paresh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651166/ https://www.ncbi.nlm.nih.gov/pubmed/29118966 http://dx.doi.org/10.1155/2017/9674712 |
Ejemplares similares
-
Removal of EMG Artifacts from Multichannel EEG Signals Using Combined Singular Spectrum Analysis and Canonical Correlation Analysis
por: Liu, Qingze, et al.
Publicado: (2019) -
Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering
por: Lin, Chin-Teng, et al.
Publicado: (2018) -
Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis
por: Hossain, Md Shafayet, et al.
Publicado: (2022) -
iCanClean Removes Motion, Muscle, Eye, and Line-Noise Artifacts from Phantom EEG
por: Downey, Ryan J., et al.
Publicado: (2023) -
Removal of Artifacts from EEG Signals: A Review
por: Jiang, Xiao, et al.
Publicado: (2019)