Cargando…
Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions
Multi-modal integration, which combines multiple neurophysiological signals, is gaining more attention for its potential to supplement single modality’s drawbacks and yield reliable results by extracting complementary features. In particular, integration of electroencephalography (EEG) and functiona...
Autores principales: | Ahn, Sangtae, Jun, Sung C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651279/ https://www.ncbi.nlm.nih.gov/pubmed/29093673 http://dx.doi.org/10.3389/fnhum.2017.00503 |
Ejemplares similares
-
Corrigendum: Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces – Current Limitations and Future Directions
por: Ahn, Sangtae, et al.
Publicado: (2021) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Multi-Modal Integration of EEG-fNIRS for Characterization of Brain Activity Evoked by Preferred Music
por: Qiu, Lina, et al.
Publicado: (2022) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data
por: Ahn, Sangtae, et al.
Publicado: (2016)