Cargando…

The Bioactivity of D-/L-Isonucleoside- and 2′-Deoxyinosine-Incorporated Aptamer AS1411s Including DNA Replication/MicroRNA Expression

In this study, chemical modification of 2′-deoxyinosine (2′-dI) and D-/L-isothymidine (D-/L-isoT) was performed on AS1411. They could promote the nucleotide-protein interaction by changing the local conformation. Twenty modified sequences were obtained, FCL-I and FCL-II showed the most noticeable ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Xinmeng, Sun, Lidan, Li, Kunfeng, Yang, Xiantao, Cai, Baobin, Zhang, Yanfen, Zhu, Yuejie, Ma, Yuan, Guan, Zhu, Wu, Yun, Zhang, Lihe, Yang, Zhenjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651494/
https://www.ncbi.nlm.nih.gov/pubmed/29246300
http://dx.doi.org/10.1016/j.omtn.2017.09.010
Descripción
Sumario:In this study, chemical modification of 2′-deoxyinosine (2′-dI) and D-/L-isothymidine (D-/L-isoT) was performed on AS1411. They could promote the nucleotide-protein interaction by changing the local conformation. Twenty modified sequences were obtained, FCL-I and FCL-II showed the most noticeable activity improvement. They stabilized the G-quadruplex, remained highly resistant to serum degradation and specificity for nucleolin, further inhibited tumor cell growth, exhibited a stronger ability to influence the different phases of the tumor cell cycle, induced S-phase arrest, promoted the inhibition of DNA replication, and suppressed the unwound function of a large T antigen as powerful as AS1411. The microarray analysis and TaqMan PCR results showed that FCL-II can upregulate the expression of four breast-cancer-related, lowly expressed miRNAs and downregulate the expression of three breast-cancer-related, highly expressed miRNAs (>2.5-fold). FCL-II resulted in enhanced treatment effects greater than AS1411 in animal experiments (p < 0.01). The computational results further proved that FCL-II exhibits more structural advantages than AS1411 for binding to the target protein nucleolin, indicating its great potential in antitumor therapy.