Cargando…
An accelerated proximal augmented Lagrangian method and its application in compressive sensing
As a first-order method, the augmented Lagrangian method (ALM) is a benchmark solver for linearly constrained convex programming, and in practice some semi-definite proximal terms are often added to its primal variable’s subproblem to make it more implementable. In this paper, we propose an accelera...
Autores principales: | Sun, Min, Liu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651725/ https://www.ncbi.nlm.nih.gov/pubmed/29104401 http://dx.doi.org/10.1186/s13660-017-1539-0 |
Ejemplares similares
-
Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems
por: Fortin, Michel, et al.
Publicado: (1983) -
An Augmented Lagrangian Based Compressed Sensing Reconstruction for Non-Cartesian Magnetic Resonance Imaging without Gridding and Regridding at Every Iteration
por: Akçakaya, Mehmet, et al.
Publicado: (2014) -
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction
por: Li, Jiaojiao, et al.
Publicado: (2015) -
Modified hybrid decomposition of the augmented Lagrangian method with larger step size for three-block separable convex programming
por: Sun, Min, et al.
Publicado: (2018) -
Fast Augmented Lagrangian Method in the convex regime with convergence guarantees for the iterates
por: Boţ, Radu Ioan, et al.
Publicado: (2022)