Cargando…

Signatures of the topological s(+−) superconducting order parameter in the type-II Weyl semimetal T(d)-MoTe(2)

In its orthorhombic T (d) polymorph, MoTe(2) is a type-II Weyl semimetal, where the Weyl fermions emerge at the boundary between electron and hole pockets. Non-saturating magnetoresistance and superconductivity were also observed in T (d)-MoTe(2). Understanding the superconductivity in T (d)-MoTe(2)...

Descripción completa

Detalles Bibliográficos
Autores principales: Guguchia, Z., von Rohr, F., Shermadini, Z., Lee, A. T., Banerjee, S., Wieteska, A. R., Marianetti, C. A., Frandsen, B. A., Luetkens, H., Gong, Z., Cheung, S. C., Baines, C., Shengelaya, A., Taniashvili, G., Pasupathy, A. N., Morenzoni, E., Billinge, S. J. L., Amato, A., Cava, R. J., Khasanov, R., Uemura, Y. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651900/
https://www.ncbi.nlm.nih.gov/pubmed/29057874
http://dx.doi.org/10.1038/s41467-017-01066-6
Descripción
Sumario:In its orthorhombic T (d) polymorph, MoTe(2) is a type-II Weyl semimetal, where the Weyl fermions emerge at the boundary between electron and hole pockets. Non-saturating magnetoresistance and superconductivity were also observed in T (d)-MoTe(2). Understanding the superconductivity in T (d)-MoTe(2), which was proposed to be topologically non-trivial, is of eminent interest. Here, we report high-pressure muon-spin rotation experiments probing the temperature-dependent magnetic penetration depth in T (d)-MoTe(2). A substantial increase of the superfluid density and a linear scaling with the superconducting critical temperature T (c) is observed under pressure. Moreover, the superconducting order parameter in T (d)-MoTe(2) is determined to have 2-gap s-wave symmetry. We also exclude time-reversal symmetry breaking in the superconducting state with zero-field μSR experiments. Considering the strong suppression of T (c) in MoTe(2) by disorder, we suggest that topologically non-trivial s (+−) state is more likely to be realized in MoTe(2) than the topologically trivial s (++) state.