Cargando…
MLACP: machine-learning-based prediction of anticancer peptides
Cancer is the second leading cause of death globally, and use of therapeutic peptides to target and kill cancer cells has received considerable attention in recent years. Identification of anticancer peptides (ACPs) through wet-lab experimentation is expensive and often time consuming; therefore, de...
Autores principales: | Manavalan, Balachandran, Basith, Shaherin, Shin, Tae Hwan, Choi, Sun, Kim, Myeong Ok, Lee, Gwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652333/ https://www.ncbi.nlm.nih.gov/pubmed/29100375 http://dx.doi.org/10.18632/oncotarget.20365 |
Ejemplares similares
-
MLACP 2.0: An updated machine learning tool for anticancer peptide prediction
por: Thi Phan, Le, et al.
Publicado: (2022) -
SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome
por: Basith, Shaherin, et al.
Publicado: (2019) -
Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2
por: Manavalan, Balachandran, et al.
Publicado: (2021) -
AtbPpred: A Robust Sequence-Based Prediction of Anti-Tubercular Peptides Using Extremely Randomized Trees
por: Manavalan, Balachandran, et al.
Publicado: (2019) -
Computational prediction of species-specific yeast DNA replication origin via iterative feature representation
por: Manavalan, Balachandran, et al.
Publicado: (2020)