Cargando…
Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring
BACKGROUND AND PURPOSE: Maternal cigarette smoking increases the risk of cardiovascular disease in offspring. Recently, we have demonstrated that perinatal nicotine exposure alters heart development and increases heart susceptibility to ischemia/reperfusion (I/R) injury in rat offspring. The present...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652749/ https://www.ncbi.nlm.nih.gov/pubmed/29100355 http://dx.doi.org/10.18632/oncotarget.20172 |
_version_ | 1783273119094407168 |
---|---|
author | Ke, Jun Dong, Nianguo Wang, Lei Li, Yong Dasgupta, Chiranjib Zhang, Lubo Xiao, Daliao |
author_facet | Ke, Jun Dong, Nianguo Wang, Lei Li, Yong Dasgupta, Chiranjib Zhang, Lubo Xiao, Daliao |
author_sort | Ke, Jun |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Maternal cigarette smoking increases the risk of cardiovascular disease in offspring. Recently, we have demonstrated that perinatal nicotine exposure alters heart development and increases heart susceptibility to ischemia/reperfusion (I/R) injury in rat offspring. The present study tested the hypothesis that DNA methylation plays a key role in the nicotine-induced development of heart ischemia-sensitive phenotype in offspring. EXPERIMENTAL APPROACH: Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. After birth, the postnatal offspring were treated with the DNA methylation inhibitor, 5-aza-2’-deoxycytidine (5-Aza) or saline from postnatal day 3 to day 10. Experiments were conducted in 1 month old offspring. KEY RESULTS: Perinatal nicotine increased I/R-induced left ventricular (LV) injury, and decreased post-ischemic recovery of the LV function and coronary flow rate in both male and female offspring. Nicotine differentially increased DNMT3a expression and global DNA methylation levels in LV tissues. Treatment with 5-Aza inhibited nicotine-induced an increase in DNMT3a and global DNA methylation, and blocked the nicotine-induced increase in I/R injury and dysfunction in the heart. In addition, nicotine attenuated protein kinases C(ε) and large-conductance Ca(2+)-activated K(+) (BKca) channel β1 subunit protein abundances in the heart, which were reversed by 5-Aza treatment. CONCLUSIONS AND IMPLICATIONS: The present findings provide novel evidence that the increased DNA methylation plays a causal role in nicotine-induced development of heart ischemic sensitive phenotype, and suggest a potential therapeutic target of DNA demethylation for the fetal programming of heart ischemic disease later in life. |
format | Online Article Text |
id | pubmed-5652749 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-56527492017-11-02 Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring Ke, Jun Dong, Nianguo Wang, Lei Li, Yong Dasgupta, Chiranjib Zhang, Lubo Xiao, Daliao Oncotarget Research Paper BACKGROUND AND PURPOSE: Maternal cigarette smoking increases the risk of cardiovascular disease in offspring. Recently, we have demonstrated that perinatal nicotine exposure alters heart development and increases heart susceptibility to ischemia/reperfusion (I/R) injury in rat offspring. The present study tested the hypothesis that DNA methylation plays a key role in the nicotine-induced development of heart ischemia-sensitive phenotype in offspring. EXPERIMENTAL APPROACH: Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. After birth, the postnatal offspring were treated with the DNA methylation inhibitor, 5-aza-2’-deoxycytidine (5-Aza) or saline from postnatal day 3 to day 10. Experiments were conducted in 1 month old offspring. KEY RESULTS: Perinatal nicotine increased I/R-induced left ventricular (LV) injury, and decreased post-ischemic recovery of the LV function and coronary flow rate in both male and female offspring. Nicotine differentially increased DNMT3a expression and global DNA methylation levels in LV tissues. Treatment with 5-Aza inhibited nicotine-induced an increase in DNMT3a and global DNA methylation, and blocked the nicotine-induced increase in I/R injury and dysfunction in the heart. In addition, nicotine attenuated protein kinases C(ε) and large-conductance Ca(2+)-activated K(+) (BKca) channel β1 subunit protein abundances in the heart, which were reversed by 5-Aza treatment. CONCLUSIONS AND IMPLICATIONS: The present findings provide novel evidence that the increased DNA methylation plays a causal role in nicotine-induced development of heart ischemic sensitive phenotype, and suggest a potential therapeutic target of DNA demethylation for the fetal programming of heart ischemic disease later in life. Impact Journals LLC 2017-08-10 /pmc/articles/PMC5652749/ /pubmed/29100355 http://dx.doi.org/10.18632/oncotarget.20172 Text en Copyright: © 2017 Ke et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Ke, Jun Dong, Nianguo Wang, Lei Li, Yong Dasgupta, Chiranjib Zhang, Lubo Xiao, Daliao Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
title | Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
title_full | Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
title_fullStr | Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
title_full_unstemmed | Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
title_short | Role of DNA methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
title_sort | role of dna methylation in perinatal nicotine-induced development of heart ischemia-sensitive phenotype in rat offspring |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652749/ https://www.ncbi.nlm.nih.gov/pubmed/29100355 http://dx.doi.org/10.18632/oncotarget.20172 |
work_keys_str_mv | AT kejun roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring AT dongnianguo roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring AT wanglei roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring AT liyong roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring AT dasguptachiranjib roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring AT zhanglubo roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring AT xiaodaliao roleofdnamethylationinperinatalnicotineinduceddevelopmentofheartischemiasensitivephenotypeinratoffspring |