Cargando…
Protein-bound uremic toxins impaired mitochondrial dynamics and functions
Protein-bound uremic toxins, indoxyl sulfate and p-cresol sulfate, increase oxidative stress and adversely affect chronic kidney disease progression and cardiovascular complications. In this study, we examined whether mitochondria are the target of indoxyl sulfate and p-cresol sulfate intoxication i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652810/ https://www.ncbi.nlm.nih.gov/pubmed/29100420 http://dx.doi.org/10.18632/oncotarget.20773 |
_version_ | 1783273134022983680 |
---|---|
author | Sun, Chiao-Yin Cheng, Mei-Ling Pan, Heng-Chih Lee, Jia-Hung Lee, Chin-Chan |
author_facet | Sun, Chiao-Yin Cheng, Mei-Ling Pan, Heng-Chih Lee, Jia-Hung Lee, Chin-Chan |
author_sort | Sun, Chiao-Yin |
collection | PubMed |
description | Protein-bound uremic toxins, indoxyl sulfate and p-cresol sulfate, increase oxidative stress and adversely affect chronic kidney disease progression and cardiovascular complications. In this study, we examined whether mitochondria are the target of indoxyl sulfate and p-cresol sulfate intoxication in vivo and in vitro. The kidneys of 10-week-old male B-6 mice with ½-nephrectomy treated with indoxyl sulfate and p-cresol sulfate were used for the animal study. Cultured human renal tubular cells were used for the in vitro study. Our results indicated that indoxyl sulfate and p-cresol sulfate impaired aerobic and anaerobic metabolism in vivo and in vitro. Indoxyl sulfate and p-cresol sulfate caused mitochondrial fission by modulating the expression of mitochondrial fission–fusion proteins. Mitochondrial dysfunction and impaired biogenesis could be protected by treatment with antioxidants. The in vitro study also demonstrated that indoxyl sulfate and p-cresol sulfate reduced mitochondrial mass by activating autophagic machinery. In summary, our study suggests that mitochondrial injury is one of the major pathological mechanisms for uremic intoxication, which is related to chronic kidney disease and its complications. |
format | Online Article Text |
id | pubmed-5652810 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-56528102017-11-02 Protein-bound uremic toxins impaired mitochondrial dynamics and functions Sun, Chiao-Yin Cheng, Mei-Ling Pan, Heng-Chih Lee, Jia-Hung Lee, Chin-Chan Oncotarget Research Paper Protein-bound uremic toxins, indoxyl sulfate and p-cresol sulfate, increase oxidative stress and adversely affect chronic kidney disease progression and cardiovascular complications. In this study, we examined whether mitochondria are the target of indoxyl sulfate and p-cresol sulfate intoxication in vivo and in vitro. The kidneys of 10-week-old male B-6 mice with ½-nephrectomy treated with indoxyl sulfate and p-cresol sulfate were used for the animal study. Cultured human renal tubular cells were used for the in vitro study. Our results indicated that indoxyl sulfate and p-cresol sulfate impaired aerobic and anaerobic metabolism in vivo and in vitro. Indoxyl sulfate and p-cresol sulfate caused mitochondrial fission by modulating the expression of mitochondrial fission–fusion proteins. Mitochondrial dysfunction and impaired biogenesis could be protected by treatment with antioxidants. The in vitro study also demonstrated that indoxyl sulfate and p-cresol sulfate reduced mitochondrial mass by activating autophagic machinery. In summary, our study suggests that mitochondrial injury is one of the major pathological mechanisms for uremic intoxication, which is related to chronic kidney disease and its complications. Impact Journals LLC 2017-09-08 /pmc/articles/PMC5652810/ /pubmed/29100420 http://dx.doi.org/10.18632/oncotarget.20773 Text en Copyright: © 2017 Sun et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Sun, Chiao-Yin Cheng, Mei-Ling Pan, Heng-Chih Lee, Jia-Hung Lee, Chin-Chan Protein-bound uremic toxins impaired mitochondrial dynamics and functions |
title | Protein-bound uremic toxins impaired mitochondrial dynamics and functions |
title_full | Protein-bound uremic toxins impaired mitochondrial dynamics and functions |
title_fullStr | Protein-bound uremic toxins impaired mitochondrial dynamics and functions |
title_full_unstemmed | Protein-bound uremic toxins impaired mitochondrial dynamics and functions |
title_short | Protein-bound uremic toxins impaired mitochondrial dynamics and functions |
title_sort | protein-bound uremic toxins impaired mitochondrial dynamics and functions |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652810/ https://www.ncbi.nlm.nih.gov/pubmed/29100420 http://dx.doi.org/10.18632/oncotarget.20773 |
work_keys_str_mv | AT sunchiaoyin proteinbounduremictoxinsimpairedmitochondrialdynamicsandfunctions AT chengmeiling proteinbounduremictoxinsimpairedmitochondrialdynamicsandfunctions AT panhengchih proteinbounduremictoxinsimpairedmitochondrialdynamicsandfunctions AT leejiahung proteinbounduremictoxinsimpairedmitochondrialdynamicsandfunctions AT leechinchan proteinbounduremictoxinsimpairedmitochondrialdynamicsandfunctions |