Cargando…

Silencing Aurora A leads to re-sensitization of breast cancer cells to Taxol through downregulation of SRC-mediated ERK and mTOR pathways

While Taxol has been reported to improve the clinical survival of breast cancer patients, subsequently developed drug-resistance of the cancer cells limits its final efficacy and applications. Previous studies suggested that Aurora A is involved in the development of the Taxol-resistance of breast c...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yan, Zhou, Wanqi, Tang, Ke, Chen, Xiaoguang, Feng, Zhiqiang, Chen, Jindong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652950/
https://www.ncbi.nlm.nih.gov/pubmed/28849180
http://dx.doi.org/10.3892/or.2017.5908
Descripción
Sumario:While Taxol has been reported to improve the clinical survival of breast cancer patients, subsequently developed drug-resistance of the cancer cells limits its final efficacy and applications. Previous studies suggested that Aurora A is involved in the development of the Taxol-resistance of breast cancer. We established Taxol-resistant breast cancer MCF-7/T cells and xenograft models to explore the role of Aurora A in Taxol resistant ER-positive breast cancer. Compared with their parental MCF-7/C cells, the Taxol-resistant MCF-7/T cells exhibited enhanced colony formation, less cell death and higher invasive ability. The resistant cells presented overexpressed Aurora A, elevated phosphorylated SRC and upregulated Ras/Raf/ERK and Akt/mTOR pathways. Silencing of Aurora A reduced the activity of SRC and downregulated the ERK and Akt/mTOR pathways, which led to re-sensitization of the resistant MCF-7/T cells to Taxol in vitro. These results suggested that the activation of Aurora A and the subsequent upregulation of ERK and Akt through SRC induced Taxol-resistance in breast cancer cells, and inhibiting Aurora A and the related SRC/EKT/Akt pathway could restore the sensitivity of breast cancer cells to Taxol. These results might shed light on the development of strategies to circumvent Taxol-related chemoresistance in breast cancer clinical practice.