Cargando…

DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem

The three-spined stickleback (Gasterosteus aculeatus L., hereafter ‘stickleback’) is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakubavičiūtė, Eglė, Bergström, Ulf, Eklöf, Johan S., Haenel, Quiterie, Bourlat, Sarah J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653352/
https://www.ncbi.nlm.nih.gov/pubmed/29059215
http://dx.doi.org/10.1371/journal.pone.0186929
_version_ 1783273215918866432
author Jakubavičiūtė, Eglė
Bergström, Ulf
Eklöf, Johan S.
Haenel, Quiterie
Bourlat, Sarah J.
author_facet Jakubavičiūtė, Eglė
Bergström, Ulf
Eklöf, Johan S.
Haenel, Quiterie
Bourlat, Sarah J.
author_sort Jakubavičiūtė, Eglė
collection PubMed
description The three-spined stickleback (Gasterosteus aculeatus L., hereafter ‘stickleback’) is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels. Still, relatively little is known about its diet—knowledge which is essential to understand the increasing role sticklebacks play in the ecosystem. Fish diet analyses typically rely on visual identification of stomach contents, a labour-intensive method that is made difficult by prey digestion and requires expert taxonomic knowledge. However, advances in DNA-based metabarcoding methods promise a simultaneous identification of most prey items, even from semi-digested tissue. Here, we studied the diet of stickleback from the western Baltic Sea coast using both DNA metabarcoding and visual analysis of stomach contents. Using the cytochrome oxidase (CO1) marker we identified 120 prey taxa in the diet, belonging to 15 phyla, 83 genera and 84 species. Compared to previous studies, this is an unusually high prey diversity. Chironomids, cladocerans and harpacticoids were dominating prey items. Large sticklebacks were found to feed more on benthic prey, such as amphipods, gastropods and isopods. DNA metabarcoding gave much higher taxonomic resolution (median rank genus) than visual analysis (median rank order), and many taxa identified using barcoding could not have been identified visually. However, a few taxa identified by visual inspection were not revealed by barcoding. In summary, our results suggest that the three-spined stickleback feeds on a wide variety of both pelagic and benthic organisms, indicating that the strong increase in stickleback populations may affect many parts of the Baltic Sea coastal ecosystem.
format Online
Article
Text
id pubmed-5653352
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56533522017-11-08 DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem Jakubavičiūtė, Eglė Bergström, Ulf Eklöf, Johan S. Haenel, Quiterie Bourlat, Sarah J. PLoS One Research Article The three-spined stickleback (Gasterosteus aculeatus L., hereafter ‘stickleback’) is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels. Still, relatively little is known about its diet—knowledge which is essential to understand the increasing role sticklebacks play in the ecosystem. Fish diet analyses typically rely on visual identification of stomach contents, a labour-intensive method that is made difficult by prey digestion and requires expert taxonomic knowledge. However, advances in DNA-based metabarcoding methods promise a simultaneous identification of most prey items, even from semi-digested tissue. Here, we studied the diet of stickleback from the western Baltic Sea coast using both DNA metabarcoding and visual analysis of stomach contents. Using the cytochrome oxidase (CO1) marker we identified 120 prey taxa in the diet, belonging to 15 phyla, 83 genera and 84 species. Compared to previous studies, this is an unusually high prey diversity. Chironomids, cladocerans and harpacticoids were dominating prey items. Large sticklebacks were found to feed more on benthic prey, such as amphipods, gastropods and isopods. DNA metabarcoding gave much higher taxonomic resolution (median rank genus) than visual analysis (median rank order), and many taxa identified using barcoding could not have been identified visually. However, a few taxa identified by visual inspection were not revealed by barcoding. In summary, our results suggest that the three-spined stickleback feeds on a wide variety of both pelagic and benthic organisms, indicating that the strong increase in stickleback populations may affect many parts of the Baltic Sea coastal ecosystem. Public Library of Science 2017-10-23 /pmc/articles/PMC5653352/ /pubmed/29059215 http://dx.doi.org/10.1371/journal.pone.0186929 Text en © 2017 Jakubavičiūtė et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Jakubavičiūtė, Eglė
Bergström, Ulf
Eklöf, Johan S.
Haenel, Quiterie
Bourlat, Sarah J.
DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
title DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
title_full DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
title_fullStr DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
title_full_unstemmed DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
title_short DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
title_sort dna metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653352/
https://www.ncbi.nlm.nih.gov/pubmed/29059215
http://dx.doi.org/10.1371/journal.pone.0186929
work_keys_str_mv AT jakubaviciuteegle dnametabarcodingrevealsdiversedietofthethreespinedsticklebackinacoastalecosystem
AT bergstromulf dnametabarcodingrevealsdiversedietofthethreespinedsticklebackinacoastalecosystem
AT eklofjohans dnametabarcodingrevealsdiversedietofthethreespinedsticklebackinacoastalecosystem
AT haenelquiterie dnametabarcodingrevealsdiversedietofthethreespinedsticklebackinacoastalecosystem
AT bourlatsarahj dnametabarcodingrevealsdiversedietofthethreespinedsticklebackinacoastalecosystem