Cargando…

Accuracy in identifying the elbow rotation axis on simulated fluoroscopic images using a new anatomical landmark

External fixation of the elbow requires identification of the elbow rotation axis, but the accuracy of traditional landmarks (capitellum and trochlea) on fluoroscopy is limited. The relative distance (RD) of the humerus may be helpful as additional landmark. The first aim of this study was to determ...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiggers, J. K., Snijders, R. M., Dobbe, J. G. G., Streekstra, G. J., den Hartog, D., Schep, N. W. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653598/
https://www.ncbi.nlm.nih.gov/pubmed/28593358
http://dx.doi.org/10.1007/s11751-017-0289-3
Descripción
Sumario:External fixation of the elbow requires identification of the elbow rotation axis, but the accuracy of traditional landmarks (capitellum and trochlea) on fluoroscopy is limited. The relative distance (RD) of the humerus may be helpful as additional landmark. The first aim of this study was to determine the optimal RD that corresponds to an on-axis lateral image of the elbow. The second aim was to assess whether the use of the optimal RD improves the surgical accuracy to identify the elbow rotation axis on fluoroscopy. CT scans of elbows from five volunteers were used to simulate fluoroscopy; the actual rotation axis was calculated with CT-based flexion–extension analysis. First, three observers measured the optimal RD on simulated fluoroscopy. The RD is defined as the distance between the dorsal part of the humerus and the projection of the posteromedial cortex of the distal humerus, divided by the anteroposterior diameter of the humerus. Second, eight trauma surgeons assessed the elbow rotation axis on simulated fluoroscopy. In a preteaching session, surgeons used traditional landmarks. The surgeons were then instructed how to use the optimal RD as additional landmark in a postteaching session. The deviation from the actual rotation axis was expressed as rotational and translational error (±SD). Measurement of the RD was robust and easily reproducible; the optimal RD was 45%. The surgeons identified the elbow rotation axis with a mean rotational error decreasing from 7.6° ± 3.4° to 6.7° ± 3.3° after teaching how to use the RD. The mean translational error decreased from 4.2 ± 2.0 to 3.7 ± 2.0 mm after teaching. The humeral RD as additional landmark yielded small but relevant improvements. Although fluoroscopy-based external fixator alignment to the elbow remains prone to error, it is recommended to use the RD as additional landmark.