Cargando…
Temporal correlation detection using computational phase-change memory
Conventional computers based on the von Neumann architecture perform computation by repeatedly transferring data between their physically separated processing and memory units. As computation becomes increasingly data centric and the scalability limits in terms of performance and power are being rea...
Autores principales: | Sebastian, Abu, Tuma, Tomas, Papandreou, Nikolaos, Le Gallo, Manuel, Kull, Lukas, Parnell, Thomas, Eleftheriou, Evangelos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653661/ https://www.ncbi.nlm.nih.gov/pubmed/29062022 http://dx.doi.org/10.1038/s41467-017-01481-9 |
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Boybat, Irem, et al.
Publicado: (2018) -
Accurate deep neural network inference using computational phase-change memory
por: Joshi, Vinay, et al.
Publicado: (2020) -
Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses
por: Nandakumar, S. R., et al.
Publicado: (2020) -
Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
por: Dazzi, Martino, et al.
Publicado: (2021) -
Projected phase-change memory devices
por: Koelmans, Wabe W., et al.
Publicado: (2015)