Cargando…
Paroxysmal atrial fibrillation recognition based on multi-scale wavelet α-entropy
BACKGROUND: This study proposed an effective method based on the wavelet multi-scale α-entropy features of heart rate variability (HRV) for the recognition of paroxysmal atrial fibrillation (PAF). This new algorithm combines wavelet decomposition and non-linear analysis methods. The PAF signal, the...
Autores principales: | Xin, Yi, Zhao, Yizhang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654099/ https://www.ncbi.nlm.nih.gov/pubmed/29061181 http://dx.doi.org/10.1186/s12938-017-0406-z |
Ejemplares similares
-
Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG
por: Alcaraz, Raúl, et al.
Publicado: (2012) -
Combining Multi-Scale Wavelet Entropy and Kernelized Classification for Bearing Multi-Fault Diagnosis
por: Rodriguez, Nibaldo, et al.
Publicado: (2019) -
Prevalence and determinants of atrial fibrillation progression in paroxysmal atrial fibrillation
por: Nguyen, Bao-Oanh, et al.
Publicado: (2023) -
Development of a Score to Predict the Paroxysmal Atrial Fibrillation in Stroke Patients: The Screening for Atrial Fibrillation Scale
por: Amaya Pascasio, Laura, et al.
Publicado: (2022) -
Multi-Scale Characteristics of Investor Sentiment Transmission Based on Wavelet, Transfer Entropy and Network Analysis
por: Han, Muye, et al.
Publicado: (2022)