Cargando…
Diversity of P-element piRNA production among M' and Q strains and its association with P-M hybrid dysgenesis in Drosophila melanogaster
BACKGROUND: Transposition of P elements in the genome causes P–M hybrid dysgenesis in Drosophila melanogaster. For the P strain, the P–M phenotypes are associated with the ability to express a class of small RNAs, called piwi-interacting small RNAs (piRNAs), that suppress the P elements in female go...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654125/ https://www.ncbi.nlm.nih.gov/pubmed/29075336 http://dx.doi.org/10.1186/s13100-017-0096-x |
Sumario: | BACKGROUND: Transposition of P elements in the genome causes P–M hybrid dysgenesis in Drosophila melanogaster. For the P strain, the P–M phenotypes are associated with the ability to express a class of small RNAs, called piwi-interacting small RNAs (piRNAs), that suppress the P elements in female gonads. However, little is known about the extent to which piRNAs are involved in the P–M hybrid dysgenesis in M′ and Q strains, which show different abilities to regulate the P elements from P strains. RESULTS: To elucidate the molecular basis of the suppression of paternally inherited P elements, we analyzed the mRNA and piRNA levels of P elements in the F1 progeny between males of a P strain and nine-line females of M′ or Q strains (M′ or Q progenies). M′ progenies showed the hybrid dysgenesis phenotype, while Q progenies did not. Consistently, the levels of P-element mRNA in both the ovaries and F1 embryos were higher in M′ progenies than in Q progenies, indicating that the M′ progenies have a weaker ability to suppress P-element expression. The level of P-element mRNA was inversely correlated to the level of piRNAs in F1 embryos. Importantly, the M′ progenies were characterized by a lower abundance of P-element piRNAs in both young ovaries and F1 embryonic bodies. The Q progenies showed various levels of piRNAs in both young ovaries and F1 embryonic bodies despite all of the Q progenies suppressing P-element transposition in their gonad. CONCLUSIONS: Our results are consistent with an idea that the level of P-element piRNAs is a determinant for dividing strain types between M′ and Q and that the suppression mechanisms of transposable elements, including piRNAs, are varied between natural populations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13100-017-0096-x) contains supplementary material, which is available to authorized users. |
---|