Cargando…

Response of basal metabolic rate to complete submergence of riparian species Salix variegata in the Three Gorges reservoir region

One-year old seedlings of Salix variegata (submergence-tolerant) and Cinnamomum camphora (submergence-intolerant) were selected and subjected to complete submergence (2 m) for 1, 5, 10, and 20 days, to elucidate the submergence- tolerance mechanism of S. variegata in the Three Gorges reservoir regio...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Shutong, Zeng, Bo, Xu, Shaojun, Zhang, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654956/
https://www.ncbi.nlm.nih.gov/pubmed/29066737
http://dx.doi.org/10.1038/s41598-017-13467-0
Descripción
Sumario:One-year old seedlings of Salix variegata (submergence-tolerant) and Cinnamomum camphora (submergence-intolerant) were selected and subjected to complete submergence (2 m) for 1, 5, 10, and 20 days, to elucidate the submergence- tolerance mechanism of S. variegata in the Three Gorges reservoir region. The basal CO(2) emission ratios (BCERs) and O(2) consumption rates (OCRs) of leaf, stem, and root were determined. The basal O(2) consumption rates (BOCRs) were calculated from the OCRs of different parts and their biomass allocations and used for evaluating the basal metabolic rate (BMR) of species with BCERs. The results showed that: (1) The BCERs of both species responded to flooding similarly, and no significant differences occurred between the submerged S. variegata (SS) and the submerged C. camphora (SC) seedlings, and between the control S. variegata (CS) and the control C. camphora (CC) seedlings. (2) The BOCRs of SS were significantly lower than those of SC on days 1 and 20, while no significant differences occurred between CS and CC for every duration. Therefore, the BMRs, evaluated from BOCRs rather than from BCERs, were related to submergence-tolerance of species, and the response of BMR to submergence would contribute to the survival of S. variegata seedlings under flooding.