Cargando…
Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature....
Autores principales: | Yu, Bin, Xu, Jia-Meng, Li, Shan, Chen, Cheng, Chen, Rui-Xin, Wang, Lei, Zhang, Yan, Wang, Ming-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655205/ https://www.ncbi.nlm.nih.gov/pubmed/29113310 http://dx.doi.org/10.18632/oncotarget.21268 |
Ejemplares similares
-
Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network
por: Li, Peng, et al.
Publicado: (2014) -
Inference of Gene Regulatory Network Based on Local Bayesian Networks
por: Liu, Fei, et al.
Publicado: (2016) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
por: Paluszewski, Martin, et al.
Publicado: (2010) -
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
por: Penfold, Christopher A., et al.
Publicado: (2012)