Cargando…

The clock gene, brain and muscle Arnt-like 1, regulates autophagy in high glucose-induced cardiomyocyte injury

High-glucose-induced cardiomyocyte injury is the major cause of diabetic cardiomyopathy, but its regulatory mechanisms are not fully understood. Here, we report that a circadian clock gene, brain and muscle Arnt-like 1 (Bmal1), increases autophagy in high-glucose-induced cardiomyocyte injury. We con...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Li, Guo, Bingyan, Zhang, Hui, Yang, Rong, Chang, Liang, Wang, Yaling, Jin, Xin, Liu, Suyun, Li, Yongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655224/
https://www.ncbi.nlm.nih.gov/pubmed/29113329
http://dx.doi.org/10.18632/oncotarget.20811
Descripción
Sumario:High-glucose-induced cardiomyocyte injury is the major cause of diabetic cardiomyopathy, but its regulatory mechanisms are not fully understood. Here, we report that a circadian clock gene, brain and muscle Arnt-like 1 (Bmal1), increases autophagy in high-glucose-induced cardiomyocyte injury. We constructed a hyperglycemia model with cultured cardiomyocytes from neonatal rats. High-glucose-induced inhibition of autophagy and cardiomyocyte injury were attenuated by Bmal1 overexpression and aggravated by its knockdown. Furthermore, autophagy stabilization by 3-methyladenine or rapamycin partially suppressed the effects of altered Bmal1 expression on cardiomyocyte survival. Mechanistically, Bmal1 mediated resistance to high-glucose-induced inhibition of autophagy at least partly by inhibiting mTOR signaling activity. Collectively, our findings suggest that the clock gene Bmal1 is a positive regulator of autophagy through the mTOR signaling pathway and protects cardiomyocytes against high-glucose toxicity.