Cargando…

Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications

Epithelial-to-mesenchymal transition (EMT) endows epithelial cells with enhanced motility and invasiveness, allowing them to participate in many physiological and pathological processes. Epithelial-to-mesenchymal transition contributes to the generation of circulating tumor cells (CTCs) in epithelia...

Descripción completa

Detalles Bibliográficos
Autores principales: Jie, Xiao-Xiang, Zhang, Xiao-Yan, Xu, Cong-Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655309/
https://www.ncbi.nlm.nih.gov/pubmed/29113414
http://dx.doi.org/10.18632/oncotarget.18277
Descripción
Sumario:Epithelial-to-mesenchymal transition (EMT) endows epithelial cells with enhanced motility and invasiveness, allowing them to participate in many physiological and pathological processes. Epithelial-to-mesenchymal transition contributes to the generation of circulating tumor cells (CTCs) in epithelial cancers because it increases tumor cell invasiveness, promotes tumor cell intravasation and ensures tumor cell survival in the peripheral system. Although the contribution of epithelial-to-mesenchymal transition to tumor cell invasiveness has been confirmed, the role epithelial-to-mesenchymal transition plays in metastasis remains debated. As a favorable material for a “liquid biopsy”, circulating tumor cells have been shown to have promising values in the clinical management of tumors. Furthermore, an increasing number of studies have begun to explore the value of CTC-related biomarkers, and some studies have found that the expression of EMT and stemness markers in circulating tumor cells, in addition to CTC detection, can provide more information on tumor diagnosis, treatment, prognosis and research.