Cargando…

Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants

Photosynthetic antenna proteins can be thought of as “programmed solvents”, which bind pigments at specific mutual orientations, thus tuning the overall energetic landscape and ensuring highly efficient light-harvesting. While positioning of chlorophyll cofactors is well understood and rationalized...

Descripción completa

Detalles Bibliográficos
Autores principales: Balevičius, Vytautas, Fox, Kieran F., Bricker, William P., Jurinovich, Sandro, Prandi, Ingrid G., Mennucci, Benedetta, Duffy, Christopher D. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655323/
https://www.ncbi.nlm.nih.gov/pubmed/29066753
http://dx.doi.org/10.1038/s41598-017-13720-6
Descripción
Sumario:Photosynthetic antenna proteins can be thought of as “programmed solvents”, which bind pigments at specific mutual orientations, thus tuning the overall energetic landscape and ensuring highly efficient light-harvesting. While positioning of chlorophyll cofactors is well understood and rationalized by the principle of an “energy funnel”, the carotenoids still pose many open questions. Particularly, their short excited state lifetime (<25 ps) renders them potential energy sinks able to compete with the reaction centers and drastically undermine light-harvesting efficiency. Exploration of the orientational phase-space revealed that the placement of central carotenoids minimizes their interaction with the nearest chlorophylls in the plant antenna complexes LHCII, CP26, CP29 and LHCI. At the same time we show that this interaction is highly sensitive to structural perturbations, which has a profound effect on the overall lifetime of the complex. This links the protein dynamics to the light-harvesting regulation in plants by the carotenoids.