Cargando…
Functionalization of P(4) through Direct P−C Bond Formation
Research on chlorine‐free conversions of P(4) into organophosphorus compounds (OPCs) has a long track record, but methods that allow desirable, direct P−C bond formations have only recently emerged. These include the use of metal organyls, carbenes, carboradicals, and photochemical approaches. The v...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655700/ https://www.ncbi.nlm.nih.gov/pubmed/28497639 http://dx.doi.org/10.1002/chem.201702067 |
Sumario: | Research on chlorine‐free conversions of P(4) into organophosphorus compounds (OPCs) has a long track record, but methods that allow desirable, direct P−C bond formations have only recently emerged. These include the use of metal organyls, carbenes, carboradicals, and photochemical approaches. The versatile product scope enables the preparation of both industrially relevant organophosphorus compounds, as well as a broad range of intriguing new compound classes. Herein we provide a concise overview of recent breakthroughs and outline the acquired fundamental insights to aid future developments. |
---|