Cargando…
Deep learning with convolutional neural networks for EEG decoding and visualization
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train...
Autores principales: | Schirrmeister, Robin Tibor, Springenberg, Jost Tobias, Fiederer, Lukas Dominique Josef, Glasstetter, Martin, Eggensperger, Katharina, Tangermann, Michael, Hutter, Frank, Burgard, Wolfram, Ball, Tonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655781/ https://www.ncbi.nlm.nih.gov/pubmed/28782865 http://dx.doi.org/10.1002/hbm.23730 |
Ejemplares similares
-
Hybrid Brain-Computer-Interfacing for Human-Compliant Robots: Inferring Continuous Subjective Ratings With Deep Regression
por: Fiederer, Lukas D. J., et al.
Publicado: (2019) -
An extended clinical EEG dataset with 15,300 automatically labelled recordings for pathology decoding
por: Kiessner, Ann-Kathrin, et al.
Publicado: (2023) -
Electrical Stimulation of the Human Cerebral Cortex by Extracranial Muscle Activity: Effect Quantification With Intracranial EEG and FEM Simulations
por: Fiederer, Lukas Dominique Josef, et al.
Publicado: (2016) -
Deep Convolutional Neural Network for EEG-Based Motor Decoding
por: Zhang, Jing, et al.
Publicado: (2022) -
Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
por: Castaño-Candamil, Sebastián, et al.
Publicado: (2019)