Cargando…

Effects of pituitary-specific overexpression of FSHα/β on reproductive traits in transgenic boars

BACKGROUND: Follicle-stimulating hormone (FSH) is a gonadotropin synthesized and secreted by the pituitary gland. FSH stimulates follicle development and maturation in females. It also plays an important role in spermatogenesis in males, including humans and mice. However, the effects of FSH on male...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenting, Quan, Yujun, Zhang, Mengmeng, Wang, Kejun, Zhu, Muzhen, Chen, Ye, Li, Qiuyan, Wu, Keliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655851/
https://www.ncbi.nlm.nih.gov/pubmed/29090093
http://dx.doi.org/10.1186/s40104-017-0208-y
Descripción
Sumario:BACKGROUND: Follicle-stimulating hormone (FSH) is a gonadotropin synthesized and secreted by the pituitary gland. FSH stimulates follicle development and maturation in females. It also plays an important role in spermatogenesis in males, including humans and mice. However, the effects of FSH on male pigs are largely unknown. In this study, we generated transgenic pigs to investigate the effects of FSHα/β overexpression on reproductive traits in boars. RESULTS: After five transgenic F(0) founders were crossed with wide-type pigs, 193 F(1) animals were obtained. Of these, 96 were confirmed as transgenic. FSHα and FSHβ mRNAs were detected only in pituitary tissue. Transgenic boars exhibited significantly higher levels of FSHα and FSHβ mRNA, serum FSH, and serum testosterone, compared to full-sib non-transgenic boars. Significant increases in testis weight, vas deferens diameter, seminiferous tubule diameter, and the number of Leydig cells were observed, suggesting that the exogenous FSHα/β affects reproductive traits. Finally, transgenic and non-transgenic boars had similar growth performance and biochemical profiles. CONCLUSIONS: Pituitary-specific overexpression of FSHα/β genes is likely to impact reproductive traits positively, as indicated by enhancements in serum testosterone level, testis weight, the development of vas deferens, seminiferous tubules, and Leydig cells in transgenic boars. A high level of serum FSH induces secretion of serum testosterone, possibly by boosting the number of Leydig cells, which presumably increases the libido and the frequency of sexual activity in transgenic boars. Our study provides a preliminary foundation for the genetic improvement of reproductive traits in male pigs.