Cargando…

Poly (ionic liquid)-Based Breath Figure Films: A New Kind of Honeycomb Porous Films with Great Extendable Capability

In this work, we reported a new method for the convenient fabrication of various functional porous films, which cannot be directly generated using breath figures (BFs). A series of polystyrene-b-poly (ionic liquid) (PS-b-PIL) block copolymers were employed for BFs process for the first time. It was...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Baozhen, Zhang, Wanlin, Gao, Ning, Zhou, Meimei, Liang, Yun, Wang, Ying, Li, Fengting, Li, Guangtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656582/
https://www.ncbi.nlm.nih.gov/pubmed/29070886
http://dx.doi.org/10.1038/s41598-017-14563-x
Descripción
Sumario:In this work, we reported a new method for the convenient fabrication of various functional porous films, which cannot be directly generated using breath figures (BFs). A series of polystyrene-b-poly (ionic liquid) (PS-b-PIL) block copolymers were employed for BFs process for the first time. It was found that PS-b-PIL could form well-defined BFs porous structure. Remarkably, the described PS-b-PIL copolymers are prone to form hierarchical structure, and the formed pore structure is strongly dependent on the used experimental parameters. Importantly, we found that the anion exchange could provide as an effective means, by which the porous films could be further and facilely converted into other functional films. As a demonstration, in our case, porous films with different surface (hydrophilic and hydrophobic) property, porous polydopamine films decorated with Au nanoparticles or glutathione and porous SiO(2) films were prepared by using different counteranions as well as further conversion. Due to the unlimited combination of cation and anion in ionic liquid moiety, all the results indicate that the BFs films generated by using PS-PIL could serve as a platform to access various functional porous films by a simple counteranion exchange, showing a great extendable capability.