Cargando…
Ionic Circuits Powered by Reverse Electrodialysis for an Ultimate Iontronic System
Despite numerous reports on iontronic devices, there has been no whole circuit working in aqueous media including even power source. Herein, we introduce complete ionic circuits powered by reverse electrodialysis (RED) for the first time without employing any electronic components. The RED-driven po...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656583/ https://www.ncbi.nlm.nih.gov/pubmed/29070833 http://dx.doi.org/10.1038/s41598-017-14390-0 |
Sumario: | Despite numerous reports on iontronic devices, there has been no whole circuit working in aqueous media including even power source. Herein, we introduce complete ionic circuits powered by reverse electrodialysis (RED) for the first time without employing any electronic components. The RED-driven polyelectrolyte diode successfully shows rectification behavior which is verified by monitoring dynamic ion distribution through fluorescence in real-time. We can also turn on and off the voltage applied to the circuit, and apply an arbitrary voltage by precisely manipulating the pressure imposed to an elastic connection tube filled with electrolyte. Furthermore, this new concept containing ionic power source advances to a more sophisticated ionic OR logic gate. The proposed system paves the way to develop not only passive iontronic devices (e.g. current ionic diode), but active ones requiring a source of energy, particularly such as a neuron-like information processor powered by fully ionic systems, and thereby aqueous computers. |
---|