Cargando…
Revealing the day-to-day regularity of urban congestion patterns with 3D speed maps
In this paper, we investigate the day-to-day regularity of urban congestion patterns. We first partition link speed data every 10 min into 3D clusters that propose a parsimonious sketch of the congestion pulse. We then gather days with similar patterns and use consensus clustering methods to produce...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656590/ https://www.ncbi.nlm.nih.gov/pubmed/29070859 http://dx.doi.org/10.1038/s41598-017-14237-8 |
Sumario: | In this paper, we investigate the day-to-day regularity of urban congestion patterns. We first partition link speed data every 10 min into 3D clusters that propose a parsimonious sketch of the congestion pulse. We then gather days with similar patterns and use consensus clustering methods to produce a unique global pattern that fits multiple days, uncovering the day-to-day regularity. We show that the network of Amsterdam over 35 days can be synthesized into only 4 consensual 3D speed maps with 9 clusters. This paves the way for a cutting-edge systematic method for travel time predictions in cities. By matching the current observation to historical consensual 3D speed maps, we design an efficient real-time method that successfully predicts 84% trips travel times with an error margin below 25%. The new concept of consensual 3D speed maps allows us to extract the essence out of large amounts of link speed observations and as a result reveals a global and previously mostly hidden picture of traffic dynamics at the whole city scale, which may be more regular and predictable than expected. |
---|