Cargando…

Gelatinizing oil in water and its removal via bacteria inhabiting the gels

When crude oil samples were shaken (200 rpm) in seawater samples from the Arabian Gulf at 30 °C, usually oil-gels were produced spontaneously leaving the water quite clear. The gelators could probably be based on cholesteryl derivatives. Microscopic examination of the established gels revealed nanof...

Descripción completa

Detalles Bibliográficos
Autores principales: Radwan, Samir S. A., Al-Mailem, Dina M., Kansour, Mayada K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656629/
https://www.ncbi.nlm.nih.gov/pubmed/29070801
http://dx.doi.org/10.1038/s41598-017-14296-x
Descripción
Sumario:When crude oil samples were shaken (200 rpm) in seawater samples from the Arabian Gulf at 30 °C, usually oil-gels were produced spontaneously leaving the water quite clear. The gelators could probably be based on cholesteryl derivatives. Microscopic examination of the established gels revealed nanofibrellar structures similar to those described by earlier workers for artificially synthesized gelators. Communities of bacteria including prosthetic and stalked members as well as oil-degrading bacteria were recorded in such gels. Chemical analysis revealed that 88.5% of the oil entrapped by gelation was biodegraded after 40 days at 30 °C. Individual bacterial species isolated from the oil-gels biodegraded in batch cultures between 17.8 and 33.3% of the oil added at time zero in 12 days at 30 °C. Gelation is a promising approach, not only for clean, physical removal of oil spilled in aquatic habitats, as so far suggested, but also in its effective microbiological biodegradation, as the current study revealed.