Cargando…
Gene Acquisition by a Distinct Phyletic Group within Streptococcus pneumoniae Promotes Adhesion to the Ocular Epithelium
Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this stu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656748/ https://www.ncbi.nlm.nih.gov/pubmed/29085912 http://dx.doi.org/10.1128/mSphere.00213-17 |
Sumario: | Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche. |
---|