Cargando…
Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
BACKGROUND: Automatically detecting falls with mobile phones provides an opportunity for rapid response to injuries and better knowledge of what precipitated the fall and its consequences. This is beneficial for populations that are prone to falling, such as people with lower limb amputations. Prior...
Autores principales: | Shawen, Nicholas, Lonini, Luca, Mummidisetty, Chaithanya Krishna, Shparii, Ilona, Albert, Mark V, Kording, Konrad, Jayaraman, Arun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656773/ https://www.ncbi.nlm.nih.gov/pubmed/29021127 http://dx.doi.org/10.2196/mhealth.8201 |
Ejemplares similares
-
Addendum of: Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls
por: Harari, Yaar, et al.
Publicado: (2021) -
Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2013) -
Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting
por: O'Brien, Megan K, et al.
Publicado: (2017) -
Autoencoder Composite Scoring to Evaluate Prosthetic Performance in Individuals with Lower Limb Amputation
por: Tabashum, Thasina, et al.
Publicado: (2022)