Cargando…
Molecular Recognition‐Mediated Transformation of Single‐Chain Polymer Nanoparticles into Crosslinked Polymer Films
We describe single‐chain polymer nanoparticles (SCNPs) possessing intramolecular dynamic covalent crosslinks that can transform into polymer films through a molecular recognition‐mediated crosslinking process. The SCNPs utilise molecular recognition with surface‐immobilised proteins to concentrate u...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656938/ https://www.ncbi.nlm.nih.gov/pubmed/28805991 http://dx.doi.org/10.1002/anie.201706379 |
Sumario: | We describe single‐chain polymer nanoparticles (SCNPs) possessing intramolecular dynamic covalent crosslinks that can transform into polymer films through a molecular recognition‐mediated crosslinking process. The SCNPs utilise molecular recognition with surface‐immobilised proteins to concentrate upon a substrate, bringing the SCNPs into close spatial proximity with one another and allowing their dynamic covalent crosslinkers to undergo intra‐ to interpolymer chain crosslinking leading to the formation of polymeric film. SCNPs must possess both the capacity for specific molecular recognition and a dynamic nature to their intramolecular crosslinkers to form polymer films, and an investigation of the initial phase of film formation indicates it proceeds from features which form upon the surface then grow predominantly in the xy directions. This approach to polymer film formation presents a potential method to “wrap” surfaces displaying molecular recognition motifs—which could potentially include viral, cellular and bacterial surfaces or artificial surfaces displaying multivalent recognition motifs—within a layer of polymer film. |
---|