Cargando…
McEnhancer: predicting gene expression via semi-supervised assignment of enhancers to target genes
Transcriptional enhancers regulate spatio-temporal gene expression. While genomic assays can identify putative enhancers en masse, assigning target genes is a complex challenge. We devised a machine learning approach, McEnhancer, which links target genes to putative enhancers via a semi-supervised l...
Autores principales: | Hafez, Dina, Karabacak, Aslihan, Krueger, Sabrina, Hwang, Yih-Chii, Wang, Li-San, Zinzen, Robert P., Ohler, Uwe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657048/ https://www.ncbi.nlm.nih.gov/pubmed/29070071 http://dx.doi.org/10.1186/s13059-017-1316-x |
Ejemplares similares
-
Determinants of promoter and enhancer transcription directionality in metazoans
por: Ibrahim, Mahmoud M., et al.
Publicado: (2018) -
A novel semi-supervised algorithm for the taxonomic assignment of metagenomic reads
por: Le, Vinh Van, et al.
Publicado: (2016) -
Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling
por: Karabacak Calviello, Aslıhan, et al.
Publicado: (2019) -
Semi-supervised discovery of differential genes
por: Oba, Shigeyuki, et al.
Publicado: (2006) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014)