Cargando…

Tractable RNA–ligand interaction kinetics

BACKGROUND: The binding of small ligands to RNA elements can cause substantial changes in the RNA structure. This constitutes an important, fast-acting mechanism of ligand-controlled transcriptional and translational gene regulation implemented by a wide variety of riboswitches. The associated refol...

Descripción completa

Detalles Bibliográficos
Autores principales: Kühnl, Felix, Stadler, Peter F., Will, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657077/
https://www.ncbi.nlm.nih.gov/pubmed/29072147
http://dx.doi.org/10.1186/s12859-017-1823-5
_version_ 1783273816591433728
author Kühnl, Felix
Stadler, Peter F.
Will, Sebastian
author_facet Kühnl, Felix
Stadler, Peter F.
Will, Sebastian
author_sort Kühnl, Felix
collection PubMed
description BACKGROUND: The binding of small ligands to RNA elements can cause substantial changes in the RNA structure. This constitutes an important, fast-acting mechanism of ligand-controlled transcriptional and translational gene regulation implemented by a wide variety of riboswitches. The associated refolding processes often cannot be explained by thermodynamic effects alone. Instead, they are governed by the kinetics of RNA folding. While the computational analysis of RNA folding can make use of well-established models of the thermodynamics of RNA structures formation, RNA–RNA interaction, and RNA–ligand interaction, kinetic effects pose fundamentally more challenging problems due to the enormous size of the conformation space. The analysis of the combined process of ligand binding and structure formation even for small RNAs is plagued by intractably large state spaces. Moreover, the interaction is concentration-dependent and thus is intrinsically non-linear. This precludes the direct transfer of the strategies previously used for the analysis of RNA folding kinetics. RESULTS: In our novel, computationally tractable approach to RNA–ligand kinetics, we overcome the two main difficulties by applying a gradient-based coarse graining to RNA–ligand systems and solving the process in a pseudo-first order approximation. The latter is well-justified for the most common case of ligand excess in RNA–ligand systems. We present the approach rigorously and discuss the parametrization of the model based on empirical data. The method supports the kinetic study of RNA–ligand systems, in particular at different ligand concentrations. As an example, we apply our approach to analyze the concentration dependence of the ligand response of the rationally designed, artificial theophylline riboswitch RS3. CONCLUSION: This work demonstrates the tractability of the computational analysis of RNA–ligand interaction. Naturally, the model will profit as more accurate measurements of folding and binding parameters become available. Due to this work, computational analysis is available to support tasks like the design of riboswitches; our analysis of RS3 suggests strong co-transcriptional effects for this riboswitch. The method used in this study is available online, cf. Section “Availability of data and materials”.
format Online
Article
Text
id pubmed-5657077
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-56570772017-10-31 Tractable RNA–ligand interaction kinetics Kühnl, Felix Stadler, Peter F. Will, Sebastian BMC Bioinformatics Research BACKGROUND: The binding of small ligands to RNA elements can cause substantial changes in the RNA structure. This constitutes an important, fast-acting mechanism of ligand-controlled transcriptional and translational gene regulation implemented by a wide variety of riboswitches. The associated refolding processes often cannot be explained by thermodynamic effects alone. Instead, they are governed by the kinetics of RNA folding. While the computational analysis of RNA folding can make use of well-established models of the thermodynamics of RNA structures formation, RNA–RNA interaction, and RNA–ligand interaction, kinetic effects pose fundamentally more challenging problems due to the enormous size of the conformation space. The analysis of the combined process of ligand binding and structure formation even for small RNAs is plagued by intractably large state spaces. Moreover, the interaction is concentration-dependent and thus is intrinsically non-linear. This precludes the direct transfer of the strategies previously used for the analysis of RNA folding kinetics. RESULTS: In our novel, computationally tractable approach to RNA–ligand kinetics, we overcome the two main difficulties by applying a gradient-based coarse graining to RNA–ligand systems and solving the process in a pseudo-first order approximation. The latter is well-justified for the most common case of ligand excess in RNA–ligand systems. We present the approach rigorously and discuss the parametrization of the model based on empirical data. The method supports the kinetic study of RNA–ligand systems, in particular at different ligand concentrations. As an example, we apply our approach to analyze the concentration dependence of the ligand response of the rationally designed, artificial theophylline riboswitch RS3. CONCLUSION: This work demonstrates the tractability of the computational analysis of RNA–ligand interaction. Naturally, the model will profit as more accurate measurements of folding and binding parameters become available. Due to this work, computational analysis is available to support tasks like the design of riboswitches; our analysis of RS3 suggests strong co-transcriptional effects for this riboswitch. The method used in this study is available online, cf. Section “Availability of data and materials”. BioMed Central 2017-10-16 /pmc/articles/PMC5657077/ /pubmed/29072147 http://dx.doi.org/10.1186/s12859-017-1823-5 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Kühnl, Felix
Stadler, Peter F.
Will, Sebastian
Tractable RNA–ligand interaction kinetics
title Tractable RNA–ligand interaction kinetics
title_full Tractable RNA–ligand interaction kinetics
title_fullStr Tractable RNA–ligand interaction kinetics
title_full_unstemmed Tractable RNA–ligand interaction kinetics
title_short Tractable RNA–ligand interaction kinetics
title_sort tractable rna–ligand interaction kinetics
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657077/
https://www.ncbi.nlm.nih.gov/pubmed/29072147
http://dx.doi.org/10.1186/s12859-017-1823-5
work_keys_str_mv AT kuhnlfelix tractablernaligandinteractionkinetics
AT stadlerpeterf tractablernaligandinteractionkinetics
AT willsebastian tractablernaligandinteractionkinetics