Cargando…
Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension
Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the steno...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658153/ https://www.ncbi.nlm.nih.gov/pubmed/29073282 http://dx.doi.org/10.1371/journal.pone.0187062 |
_version_ | 1783273943370563584 |
---|---|
author | Kashyap, Sonu Warner, Gina Hu, Zeng Gao, Feng Osman, Mazen Al Saiegh, Yousif Lien, Karen R. Nath, Karl Grande, Joseph P. |
author_facet | Kashyap, Sonu Warner, Gina Hu, Zeng Gao, Feng Osman, Mazen Al Saiegh, Yousif Lien, Karen R. Nath, Karl Grande, Joseph P. |
author_sort | Kashyap, Sonu |
collection | PubMed |
description | Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10–14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system. |
format | Online Article Text |
id | pubmed-5658153 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56581532017-11-09 Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension Kashyap, Sonu Warner, Gina Hu, Zeng Gao, Feng Osman, Mazen Al Saiegh, Yousif Lien, Karen R. Nath, Karl Grande, Joseph P. PLoS One Research Article Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10–14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system. Public Library of Science 2017-10-26 /pmc/articles/PMC5658153/ /pubmed/29073282 http://dx.doi.org/10.1371/journal.pone.0187062 Text en © 2017 Kashyap et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kashyap, Sonu Warner, Gina Hu, Zeng Gao, Feng Osman, Mazen Al Saiegh, Yousif Lien, Karen R. Nath, Karl Grande, Joseph P. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension |
title | Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension |
title_full | Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension |
title_fullStr | Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension |
title_full_unstemmed | Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension |
title_short | Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension |
title_sort | cardiovascular phenotype in smad3 deficient mice with renovascular hypertension |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658153/ https://www.ncbi.nlm.nih.gov/pubmed/29073282 http://dx.doi.org/10.1371/journal.pone.0187062 |
work_keys_str_mv | AT kashyapsonu cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT warnergina cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT huzeng cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT gaofeng cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT osmanmazen cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT alsaieghyousif cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT lienkarenr cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT nathkarl cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension AT grandejosephp cardiovascularphenotypeinsmad3deficientmicewithrenovascularhypertension |