Cargando…
A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action
The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA). However, the efficacy of a specific sgRNA is not...
Autores principales: | Abadi, Shiran, Yan, Winston X., Amar, David, Mayrose, Itay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658169/ https://www.ncbi.nlm.nih.gov/pubmed/29036168 http://dx.doi.org/10.1371/journal.pcbi.1005807 |
Ejemplares similares
-
Harnessing machine learning to guide phylogenetic-tree search algorithms
por: Azouri, Dana, et al.
Publicado: (2021) -
A cleavage-based surrogate reporter for the evaluation of CRISPR–Cas9 cleavage efficiency
por: Jung, Soo Bin, et al.
Publicado: (2021) -
Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system
por: Liu, Xiaoxi, et al.
Publicado: (2016) -
Model selection may not be a mandatory step for phylogeny reconstruction
por: Abadi, Shiran, et al.
Publicado: (2019) -
Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system
por: Das, Jutan, et al.
Publicado: (2023)