Cargando…
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set o...
Autores principales: | Gabasova, Evelina, Reid, John, Wernisch, Lorenz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658176/ https://www.ncbi.nlm.nih.gov/pubmed/29036190 http://dx.doi.org/10.1371/journal.pcbi.1005781 |
Ejemplares similares
-
Testing the Utility of an Integrated Analysis of Copy Number and Transcriptomics Datasets for Inferring Gene Regulatory Relationships
por: Goh, Xin Yi, et al.
Publicado: (2013) -
A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes
por: Newton, Richard, et al.
Publicado: (2019) -
STEME: A Robust, Accurate Motif Finder for Large Data Sets
por: Reid, John E., et al.
Publicado: (2014) -
STEME: efficient EM to find motifs in large data sets
por: Reid, John E., et al.
Publicado: (2011) -
Pseudotime estimation: deconfounding single cell time series
por: Reid, John E., et al.
Publicado: (2016)