Cargando…
Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system
Oncolytic virotherapy has the disadvantage of being unsuitable for systemic delivery due to immune elimination. Liposomal encapsulation is well-recognized to reduce immune elimination and enhance the stability of drugs in the bloodstream. In the present study, the potential of liposome-encapsulated...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658411/ https://www.ncbi.nlm.nih.gov/pubmed/29074882 http://dx.doi.org/10.1038/s41598-017-14717-x |
Sumario: | Oncolytic virotherapy has the disadvantage of being unsuitable for systemic delivery due to immune elimination. Liposomal encapsulation is well-recognized to reduce immune elimination and enhance the stability of drugs in the bloodstream. In the present study, the potential of liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus (TelomeScan) expressing GFP (Lipo-pTS) as an oncolytic adenoviral agent suitable for systemic delivery was investigated. Lipo-pTS, which has a diameter of 40–50 nm, showed potent antitumor effects on HCT116 colon carcinoma cells in vitro and in vivo. Tumor selectivity of Lipo-pTS was independent of coxsackie and adenovirus receptor (CAR). Importantly, Lipo-pTS reduced production of adenovirus-neutralizing antibodies (AdNAbs) after intravenous administration into immune-competent mice compared to TelomeScan, and even in the presence of AdNAbs, Lipo-pTS maintained strong cytotoxicity. In conclusion, Lipo-pTS has the potential to become an oncolytic adenoviral agent suitable for systemic delivery with the characteristics of CAR-independent antitumor activity and a stealth effect on the immune system. |
---|