Cargando…
Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models
[Image: see text] We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder–decoder architecture that consists of two recurrent neural networks, which...
Autores principales: | Liu, Bowen, Ramsundar, Bharath, Kawthekar, Prasad, Shi, Jade, Gomes, Joseph, Luu Nguyen, Quang, Ho, Stephen, Sloane, Jack, Wender, Paul, Pande, Vijay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658761/ https://www.ncbi.nlm.nih.gov/pubmed/29104927 http://dx.doi.org/10.1021/acscentsci.7b00303 |
Ejemplares similares
-
Solving the RNA design problem with reinforcement learning
por: Eastman, Peter, et al.
Publicado: (2018) -
Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments
por: Ucak, Umit V., et al.
Publicado: (2022) -
Substructure-based neural machine translation for retrosynthetic prediction
por: Ucak, Umit V., et al.
Publicado: (2021) -
Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more
por: Ramsundar, Bharath, et al.
Publicado: (2019) -
Deep Retrosynthetic Reaction Prediction using Local
Reactivity and Global Attention
por: Chen, Shuan, et al.
Publicado: (2021)