Cargando…
Imaging the adult zebrafish cone mosaic using optical coherence tomography
Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659228/ https://www.ncbi.nlm.nih.gov/pubmed/28177275 http://dx.doi.org/10.1017/S0952523816000092 |
_version_ | 1783274132798963712 |
---|---|
author | HUCKENPAHLER, ALISON L. WILK, MELISSA A. COOPER, ROBERT F. MOEHRING, FRANCIE LINK, BRIAN A. CARROLL, JOSEPH COLLERY, ROSS F. |
author_facet | HUCKENPAHLER, ALISON L. WILK, MELISSA A. COOPER, ROBERT F. MOEHRING, FRANCIE LINK, BRIAN A. CARROLL, JOSEPH COLLERY, ROSS F. |
author_sort | HUCKENPAHLER, ALISON L. |
collection | PubMed |
description | Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scaling information (limiting quantitative analyses) or require euthanizing the fish (precluding longitudinal analyses). Here we describe improved methods for imaging the adult zebrafish retina using spectral domain optical coherence tomography (OCT). Transgenic fli1:eGFP zebrafish were imaged using the Bioptigen Envisu R2200 broadband source OCT with a 12-mm telecentric probe to measure axial length and a mouse retina probe to acquire retinal volume scans subtending 1.2 × 1.2 mm nominally. En face summed volume projections were generated from the volume scans using custom software that allows the user to create contours tailored to specific retinal layer(s) of interest. Following imaging, the eyes were dissected for ex vivo fluorescence microscopy, and measurements of blood vessel branch points were compared to those made from the en face OCT images to determine the OCT lateral scale as a function of axial length. Using this scaling model, we imaged the photoreceptor layer of five wild-type zebrafish and quantified the density and packing geometry of the UV cone submosaic. Our in vivo cone density measurements agreed with measurements from previously published histology values. The method presented here allows accurate, quantitative assessment of cone structure in vivo and will be useful for longitudinal studies of the zebrafish cone mosaics. |
format | Online Article Text |
id | pubmed-5659228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-56592282017-11-06 Imaging the adult zebrafish cone mosaic using optical coherence tomography HUCKENPAHLER, ALISON L. WILK, MELISSA A. COOPER, ROBERT F. MOEHRING, FRANCIE LINK, BRIAN A. CARROLL, JOSEPH COLLERY, ROSS F. Vis Neurosci Brief Communication Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scaling information (limiting quantitative analyses) or require euthanizing the fish (precluding longitudinal analyses). Here we describe improved methods for imaging the adult zebrafish retina using spectral domain optical coherence tomography (OCT). Transgenic fli1:eGFP zebrafish were imaged using the Bioptigen Envisu R2200 broadband source OCT with a 12-mm telecentric probe to measure axial length and a mouse retina probe to acquire retinal volume scans subtending 1.2 × 1.2 mm nominally. En face summed volume projections were generated from the volume scans using custom software that allows the user to create contours tailored to specific retinal layer(s) of interest. Following imaging, the eyes were dissected for ex vivo fluorescence microscopy, and measurements of blood vessel branch points were compared to those made from the en face OCT images to determine the OCT lateral scale as a function of axial length. Using this scaling model, we imaged the photoreceptor layer of five wild-type zebrafish and quantified the density and packing geometry of the UV cone submosaic. Our in vivo cone density measurements agreed with measurements from previously published histology values. The method presented here allows accurate, quantitative assessment of cone structure in vivo and will be useful for longitudinal studies of the zebrafish cone mosaics. Cambridge University Press 2016 /pmc/articles/PMC5659228/ /pubmed/28177275 http://dx.doi.org/10.1017/S0952523816000092 Text en © Cambridge University Press 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Brief Communication HUCKENPAHLER, ALISON L. WILK, MELISSA A. COOPER, ROBERT F. MOEHRING, FRANCIE LINK, BRIAN A. CARROLL, JOSEPH COLLERY, ROSS F. Imaging the adult zebrafish cone mosaic using optical coherence tomography |
title | Imaging the adult zebrafish cone mosaic using optical coherence tomography |
title_full | Imaging the adult zebrafish cone mosaic using optical coherence tomography |
title_fullStr | Imaging the adult zebrafish cone mosaic using optical coherence tomography |
title_full_unstemmed | Imaging the adult zebrafish cone mosaic using optical coherence tomography |
title_short | Imaging the adult zebrafish cone mosaic using optical coherence tomography |
title_sort | imaging the adult zebrafish cone mosaic using optical coherence tomography |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659228/ https://www.ncbi.nlm.nih.gov/pubmed/28177275 http://dx.doi.org/10.1017/S0952523816000092 |
work_keys_str_mv | AT huckenpahleralisonl imagingtheadultzebrafishconemosaicusingopticalcoherencetomography AT wilkmelissaa imagingtheadultzebrafishconemosaicusingopticalcoherencetomography AT cooperrobertf imagingtheadultzebrafishconemosaicusingopticalcoherencetomography AT moehringfrancie imagingtheadultzebrafishconemosaicusingopticalcoherencetomography AT linkbriana imagingtheadultzebrafishconemosaicusingopticalcoherencetomography AT carrolljoseph imagingtheadultzebrafishconemosaicusingopticalcoherencetomography AT colleryrossf imagingtheadultzebrafishconemosaicusingopticalcoherencetomography |