Cargando…

Schistosoma japonicum transmission risk maps at present and under climate change in mainland China

BACKGROUND: The South-to-North Water Diversion (SNWD) project is designed to channel fresh water from the Yangtze River north to more industrialized parts of China. An important question is whether future climate change and dispersal via the SNWD may synergistically favor a northward expansion of sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Gengping, Fan, Jingyu, Peterson, A. Townsend
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659800/
https://www.ncbi.nlm.nih.gov/pubmed/29040273
http://dx.doi.org/10.1371/journal.pntd.0006021
Descripción
Sumario:BACKGROUND: The South-to-North Water Diversion (SNWD) project is designed to channel fresh water from the Yangtze River north to more industrialized parts of China. An important question is whether future climate change and dispersal via the SNWD may synergistically favor a northward expansion of species involved in hosting and transmitting schistosomiasis in China, specifically the intermediate host, Oncomelania hupensis. METHODOLOGY/ PRINCIPAL FINDINGS: In this study, climate spaces occupied by the four subspecies of O. hupensis (O. h. hupensis, O. h. robertsoni, O. h. guangxiensis and O. h. tangi) were estimated, and niche conservatism tested among each pair of subspecies. Fine-tuned Maxent (fMaxent) and ensemble models were used to anticipate potential distributions of O. hupensis under future climate change scenarios. We were largely unable to reject the null hypothesis that climatic niches are conserved among the four subspecies, so factors other than climate appear to account for the divergence of O. hupensis populations across mainland China. Both model approaches indicated increased suitability and range expansion in O. h. hupensis in the future; an eastward and northward shift in O. h. robertsioni and O. h. guangxiensis, respectively; and relative distributional stability in O. h. gangi. CONCLUSIONS/SIGNIFICANCE: The southern parts of the Central Route of SNWD will coincide with suitable areas for O. h. hupensis in 2050–2060; its suitable areas will also expand northward along the southern parts of the Eastern Route by 2080–2090. Our results call for rigorous monitoring and surveillance of schistosomiasis along the southern Central Route and Eastern Route of the SNWD in a future, warmer China.