Cargando…
Hybrid self-optimized clustering model based on citation links and textual features to detect research topics
The challenge of detecting research topics in a specific research field has attracted attention from researchers in the bibliometrics community. In this study, to solve two problems of clustering papers, i.e., the influence of different distributions of citation links and involved textual features o...
Autores principales: | Yu, Dejian, Wang, Wanru, Zhang, Shuai, Zhang, Wenyu, Liu, Rongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659815/ https://www.ncbi.nlm.nih.gov/pubmed/29077747 http://dx.doi.org/10.1371/journal.pone.0187164 |
Ejemplares similares
-
Uncovering dynamic textual topics that explain crime
por: Virtanen, Seppo
Publicado: (2021) -
Citation and self-citation in medical research in Iran
por: Rashidi, Ali
Publicado: (2014) -
Topic2features: a novel framework to classify noisy and sparse textual data using LDA topic distributions
por: Wahid, Junaid Abdul, et al.
Publicado: (2021) -
Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis
por: Mejia, Cristian, et al.
Publicado: (2021) -
The citation advantage of linking publications to research data
por: Colavizza, Giovanni, et al.
Publicado: (2020)