Cargando…

Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries

Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jianjiang, Wang, Ning, Cui, Zili, Du, Huiping, Fu, Lin, Huang, Changshui, Yang, Ze, Shen, Xiangyan, Yi, Yuanping, Tu, Zeyi, Li, Yuliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660080/
https://www.ncbi.nlm.nih.gov/pubmed/29079826
http://dx.doi.org/10.1038/s41467-017-01202-2
_version_ 1783274224697212928
author He, Jianjiang
Wang, Ning
Cui, Zili
Du, Huiping
Fu, Lin
Huang, Changshui
Yang, Ze
Shen, Xiangyan
Yi, Yuanping
Tu, Zeyi
Li, Yuliang
author_facet He, Jianjiang
Wang, Ning
Cui, Zili
Du, Huiping
Fu, Lin
Huang, Changshui
Yang, Ze
Shen, Xiangyan
Yi, Yuanping
Tu, Zeyi
Li, Yuliang
author_sort He, Jianjiang
collection PubMed
description Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g(−1) for lithium ion batteries and 650 mAh g(−1) for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.
format Online
Article
Text
id pubmed-5660080
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56600802017-10-31 Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries He, Jianjiang Wang, Ning Cui, Zili Du, Huiping Fu, Lin Huang, Changshui Yang, Ze Shen, Xiangyan Yi, Yuanping Tu, Zeyi Li, Yuliang Nat Commun Article Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g(−1) for lithium ion batteries and 650 mAh g(−1) for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area. Nature Publishing Group UK 2017-10-27 /pmc/articles/PMC5660080/ /pubmed/29079826 http://dx.doi.org/10.1038/s41467-017-01202-2 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
He, Jianjiang
Wang, Ning
Cui, Zili
Du, Huiping
Fu, Lin
Huang, Changshui
Yang, Ze
Shen, Xiangyan
Yi, Yuanping
Tu, Zeyi
Li, Yuliang
Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
title Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
title_full Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
title_fullStr Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
title_full_unstemmed Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
title_short Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
title_sort hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660080/
https://www.ncbi.nlm.nih.gov/pubmed/29079826
http://dx.doi.org/10.1038/s41467-017-01202-2
work_keys_str_mv AT hejianjiang hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT wangning hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT cuizili hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT duhuiping hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT fulin hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT huangchangshui hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT yangze hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT shenxiangyan hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT yiyuanping hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT tuzeyi hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries
AT liyuliang hydrogensubstitutedgraphdiyneascarbonrichflexibleelectrodeforlithiumandsodiumionbatteries