Cargando…

Self-propulsion of a grain-filled dimer in a vertically vibrated channel

Steady dissipation of energy is a crucial property that distinguishes active particles from Brownian particles. However, it is not straightforward to explicitly model the dissipative property of existing active particles driven by a vibrating plate. We present a novel active particle that can be exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, C., Zheng, N., Wang, L.-P., Li, L.-S., Shi, Q.-F., Lu, Zhiyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660184/
https://www.ncbi.nlm.nih.gov/pubmed/29079811
http://dx.doi.org/10.1038/s41598-017-14299-8
Descripción
Sumario:Steady dissipation of energy is a crucial property that distinguishes active particles from Brownian particles. However, it is not straightforward to explicitly model the dissipative property of existing active particles driven by a vibrating plate. We present a novel active particle that can be explicitly modeled by Newtonian dynamics of a conservative force field plus two asymmetrical dissipative terms. The particle is a dimer consisting of two ping-pong balls connected by a rigid rod, and its two balls are filled with granular particles of the same total mass but of different grain size. This dimer placed on a vibrating plate exhibits 3 types of motion – by tuning the frequency and the amplitude of the vibration, the dimer undergoes either a directed motion toward the small (or large) grain-filled side or an unbiased random motion. We investigate the various modes of motion both experimentally and numerically and show that the directed motion is a result of the asymmetric damping due to the size difference in the filling grains. Furthermore, the numerical simulation reveals that the dimer’s dynamics in either directed motion mode resembles a limit cycle attractor that is independent of its initial condition.