Cargando…

Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG

High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconduct...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashimoto, Hiroaki, Hasegawa, Yuka, Araki, Toshihiko, Sugata, Hisato, Yanagisawa, Takufumi, Yorifuji, Shiro, Hirata, Masayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660237/
https://www.ncbi.nlm.nih.gov/pubmed/29079768
http://dx.doi.org/10.1038/s41598-017-14452-3
Descripción
Sumario:High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8–13 Hz), beta (13–25 Hz), low gamma (25–50 Hz), and high gamma (50–100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550–750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.