Cargando…
Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging
It is generally acknowledged that calibration of the imaging system (be it a SPECT or a PET scanner) is one of the critical components associated with in vivo activity quantification in nuclear medicine. The system calibration is generally performed through the acquisition of a source with a known a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660760/ https://www.ncbi.nlm.nih.gov/pubmed/29312467 http://dx.doi.org/10.1155/2017/9830386 |
_version_ | 1783274351251947520 |
---|---|
author | D'Arienzo, Marco Cox, Maurice |
author_facet | D'Arienzo, Marco Cox, Maurice |
author_sort | D'Arienzo, Marco |
collection | PubMed |
description | It is generally acknowledged that calibration of the imaging system (be it a SPECT or a PET scanner) is one of the critical components associated with in vivo activity quantification in nuclear medicine. The system calibration is generally performed through the acquisition of a source with a known amount of radioactivity. The decay-corrected calibration factor is the “output” quantity in a measurement model for the process. This quantity is a function of a number of “input” variables, including total counts in the volume of interest (VOI), radionuclide activity concentration, source volume, acquisition duration, radionuclide half-life, and calibration time of the radionuclide. Uncertainties in the input variables propagate through the calculation to the “combined” uncertainty in the output quantity. In the present study, using the general formula given in the GUM (Guide to the Expression of Uncertainty in Measurement) for aggregating uncertainty components, we derive a practical relation to assess the combined standard uncertainty for the calibration factor of an emission tomography system. At a time of increasing need for accuracy in quantification studies, the proposed approach has the potential to be easily implemented in clinical practice. |
format | Online Article Text |
id | pubmed-5660760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-56607602018-01-08 Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging D'Arienzo, Marco Cox, Maurice Comput Math Methods Med Research Article It is generally acknowledged that calibration of the imaging system (be it a SPECT or a PET scanner) is one of the critical components associated with in vivo activity quantification in nuclear medicine. The system calibration is generally performed through the acquisition of a source with a known amount of radioactivity. The decay-corrected calibration factor is the “output” quantity in a measurement model for the process. This quantity is a function of a number of “input” variables, including total counts in the volume of interest (VOI), radionuclide activity concentration, source volume, acquisition duration, radionuclide half-life, and calibration time of the radionuclide. Uncertainties in the input variables propagate through the calculation to the “combined” uncertainty in the output quantity. In the present study, using the general formula given in the GUM (Guide to the Expression of Uncertainty in Measurement) for aggregating uncertainty components, we derive a practical relation to assess the combined standard uncertainty for the calibration factor of an emission tomography system. At a time of increasing need for accuracy in quantification studies, the proposed approach has the potential to be easily implemented in clinical practice. Hindawi 2017 2017-10-12 /pmc/articles/PMC5660760/ /pubmed/29312467 http://dx.doi.org/10.1155/2017/9830386 Text en Copyright © 2017 Marco D'Arienzo and Maurice Cox. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article D'Arienzo, Marco Cox, Maurice Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging |
title | Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging |
title_full | Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging |
title_fullStr | Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging |
title_full_unstemmed | Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging |
title_short | Uncertainty Analysis in the Calibration of an Emission Tomography System for Quantitative Imaging |
title_sort | uncertainty analysis in the calibration of an emission tomography system for quantitative imaging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660760/ https://www.ncbi.nlm.nih.gov/pubmed/29312467 http://dx.doi.org/10.1155/2017/9830386 |
work_keys_str_mv | AT darienzomarco uncertaintyanalysisinthecalibrationofanemissiontomographysystemforquantitativeimaging AT coxmaurice uncertaintyanalysisinthecalibrationofanemissiontomographysystemforquantitativeimaging |