Cargando…

The Involvement of β-Catenin/COX-2/VEGF Axis in NMDA-Caused Retinopathy

NMDA, a molecule that is capable of producing the loss of retinal ganglia cells (RGCs), has been widely studied; however, the detailed mechanism is not yet clarified. Previously, Wnt/β-catenin signaling has been suggested to be involved in the NMDA-induced retinopathy. In addition, previous investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Dan, Zhang, Wei Kevin, Tian, Han, Li, Xiao-Jun, Liu, Min, Li, Yu-Sang, Tang, He-Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660823/
https://www.ncbi.nlm.nih.gov/pubmed/29158916
http://dx.doi.org/10.1155/2017/9760501
Descripción
Sumario:NMDA, a molecule that is capable of producing the loss of retinal ganglia cells (RGCs), has been widely studied; however, the detailed mechanism is not yet clarified. Previously, Wnt/β-catenin signaling has been suggested to be involved in the NMDA-induced retinopathy. In addition, previous investigations in our group demonstrated the presence of a Wnt/β-catenin/COX-2 axis in dorsal root ganglions (DRGs). Therefore, here in this paper, we tested whether there is an association of such axis with NMDA-induced RGC loss. Rat retinal damage models generated by intravitreal injection of NMDA were used to measure the expression levels of β-catenin, COX-2, and VEGF in retinas, and the neuron numbers of the retinal GCL of rats were counted. Then, pharmacological tools (MK801, a NMDA receptor inhibitor; Dickkopf homolog 1, a specific inhibitor of the Wnt pathway; NS-398, a COX-2 inhibitor; and bevacizumab, IVB, a VEGF inhibitor) were introduced to evaluate the detailed roles of Wnt/β-catenin, COX-2, and VEGF in retinopathy of rats. Results demonstrated that all three factors in sequence are positively regulated neuronal loss induced by NMDA. These observations indicated that the Wnt pathway/COX-2/VEGF axis plays a pathogenic role in retinopathy and represented novel therapeutic targets.