Cargando…
Sustained renal inflammation following 2 weeks of inhalation of occupationally relevant levels of zinc oxide nanoparticles in Sprague Dawley rats
Exposure to zinc oxide (ZnO) has been linked to adverse health effects, but the renal effects of ZnO nanoparticles (ZnONPs) remain unclear. The objective of this study was to determine the renal toxicity of inhaled ZnONPs. Sprague Dawley (SD) rats were exposed to occupationally relevant levels of 1....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Toxicologic Pathology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660952/ https://www.ncbi.nlm.nih.gov/pubmed/29097840 http://dx.doi.org/10.1293/tox.2017-0025 |
Sumario: | Exposure to zinc oxide (ZnO) has been linked to adverse health effects, but the renal effects of ZnO nanoparticles (ZnONPs) remain unclear. The objective of this study was to determine the renal toxicity of inhaled ZnONPs. Sprague Dawley (SD) rats were exposed to occupationally relevant levels of 1.1 (low dose) and 4.9 mg/m(3) (high dose) ZnONPs or high-efficiency particulate arresting-filtered air (HEPA-FA) via inhalation for 2 weeks. Histopathological examinations of rat kidneys were performed at 24 hours, 7 days, and 1 month after exposure. A significant increase in microscopic inflammatory foci with pronounced periglomerular inflammation and interstitial lymphocytic infiltration was found in rats exposed to low and high doses of ZnONPs compared with rats exposed to HEPA-FA at the three time points following 2 weeks of exposure. Tubulitis featuring lymphocytic infiltrate within the tubular epithelium was found after 24 hours but had disappeared at 7 and 30 days in both the low- and high-dose exposure groups. Our findings demonstrate that inhaled ZnONPs cause sustained renal periglomerular and interstitial inflammation through lymphocytic infiltration. These findings provide histopathological evidence regarding sustained renal inflammation of nanoparticle exposure in rats and may provide some insight into the occupational health effects of ZnONPs on exposed workers. |
---|