Cargando…
Peptide-substituted oligonucleotide synthesis and non-toxic, passive cell delivery
Chemically modified oligodeoxynucleotides (ODNs) are known to modulate gene expression by interacting with RNA. An efficient approach for synthesizing amino acid- or peptide-substituted triazolylphosphonate analogs (TP ODNs) has been developed to provide improved stability and cell uptake. The chemi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661639/ https://www.ncbi.nlm.nih.gov/pubmed/29263901 http://dx.doi.org/10.1038/sigtrans.2016.19 |
Sumario: | Chemically modified oligodeoxynucleotides (ODNs) are known to modulate gene expression by interacting with RNA. An efficient approach for synthesizing amino acid- or peptide-substituted triazolylphosphonate analogs (TP ODNs) has been developed to provide improved stability and cell uptake. The chemistry is quite general, as peptides can be introduced throughout the TP ODN at any preselected internucleotide linkage. These synthetic TP ODNs enter cells through endocytosis in the absence of transfection reagents and localize into perinuclear organelles. The entrapped ODNs are released into the cytoplasm by treatment with endosomal-releasing agents and several are then active as microRNA inhibitors. |
---|