Cargando…
Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation
Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodul...
Autores principales: | Wang, Shuo, Zhou, Mu, Liu, Zaiyi, Liu, Zhenyu, Gu, Dongsheng, Zang, Yali, Dong, Di, Gevaert, Olivier, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661888/ https://www.ncbi.nlm.nih.gov/pubmed/28688283 http://dx.doi.org/10.1016/j.media.2017.06.014 |
Ejemplares similares
-
N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
por: Nie, Xingqing, et al.
Publicado: (2022) -
Corrigendum: N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
por: Nie, Xingqing, et al.
Publicado: (2022) -
Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule
por: He, Lan, et al.
Publicado: (2016) -
3D multi-view convolutional neural networks for lung nodule classification
por: Kang, Guixia, et al.
Publicado: (2017) -
Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification
por: Zheng, Sunyi, et al.
Publicado: (2020)