Cargando…

Development of a new tissue injector for subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelium

BACKGROUND: Subretinal cell transplantation is a challenging surgical maneuver. This paper describes the preliminary findings of a new tissue injector for subretinal implantation of an ultrathin non-absorbable substrate seeded with human embryonic stem cell-derived retinal pigment epithelium (hESC-R...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandes, Rodrigo A. Brant, Stefanini, Francisco R., Falabella, Paulo, Koss, Michael J., Wells, Trent, Diniz, Bruno, Ribeiro, Ramiro, Schor, Paulo, Maia, Mauricio, Penha, Fernando M., Hinton, David R., Tai, Yu-Chong, Humayun, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662097/
https://www.ncbi.nlm.nih.gov/pubmed/29093829
http://dx.doi.org/10.1186/s40942-017-0095-6
Descripción
Sumario:BACKGROUND: Subretinal cell transplantation is a challenging surgical maneuver. This paper describes the preliminary findings of a new tissue injector for subretinal implantation of an ultrathin non-absorbable substrate seeded with human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE). METHODS: Ultrathin Parylene-C substrates measuring 3.5 mm × 6.0 mm seeded with hESC-RPE (implant referred to as CPCB-RPE1) were implanted into the subretinal space of 12 Yucatan minipigs. Animals were euthanized immediately after the procedure and underwent spectral domain optical coherence tomography (SD-OCT) and histological analysis to assess the subretinal placement of the implant. Evaluation of the hESC-RPE cells seeded on the substrate was carried out before and after implantation using standard cell counting techniques. RESULTS: The tissue injector delivered the CPCB-RPE1 implant through a 1.5 mm sclerotomy and a 1.0–1.5 mm retinectomy. SD-OCT scans and histological examination revealed that substrates were precisely placed in the subretinal space, and that the hESC-RPE cell monolayer continued to cover the surface of the substrate after the surgical procedure. CONCLUSION: This innovative tissue injector was able to efficiently deliver the implant in the subretinal space of Yucatan minipigs, preventing significant hESC-RPE cell loss, minimizing tissue trauma, surgical complications and postoperative inflammation.