Cargando…

Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values

OBJECTIVES: This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. METHODS: We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Hairong, Xu, Zanzan, Shao, Xianhong, Wismeijer, Daniel, Sun, Ping, Wang, Jingxiao, Wu, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662232/
https://www.ncbi.nlm.nih.gov/pubmed/29084260
http://dx.doi.org/10.1371/journal.pone.0187010
_version_ 1783274594505850880
author Huang, Hairong
Xu, Zanzan
Shao, Xianhong
Wismeijer, Daniel
Sun, Ping
Wang, Jingxiao
Wu, Gang
author_facet Huang, Hairong
Xu, Zanzan
Shao, Xianhong
Wismeijer, Daniel
Sun, Ping
Wang, Jingxiao
Wu, Gang
author_sort Huang, Hairong
collection PubMed
description OBJECTIVES: This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. METHODS: We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. RESULTS: The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. CONCLUSIONS: These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice.
format Online
Article
Text
id pubmed-5662232
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56622322017-11-09 Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values Huang, Hairong Xu, Zanzan Shao, Xianhong Wismeijer, Daniel Sun, Ping Wang, Jingxiao Wu, Gang PLoS One Research Article OBJECTIVES: This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. METHODS: We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. RESULTS: The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. CONCLUSIONS: These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice. Public Library of Science 2017-10-30 /pmc/articles/PMC5662232/ /pubmed/29084260 http://dx.doi.org/10.1371/journal.pone.0187010 Text en © 2017 Huang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Huang, Hairong
Xu, Zanzan
Shao, Xianhong
Wismeijer, Daniel
Sun, Ping
Wang, Jingxiao
Wu, Gang
Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
title Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
title_full Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
title_fullStr Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
title_full_unstemmed Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
title_short Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
title_sort multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662232/
https://www.ncbi.nlm.nih.gov/pubmed/29084260
http://dx.doi.org/10.1371/journal.pone.0187010
work_keys_str_mv AT huanghairong multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues
AT xuzanzan multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues
AT shaoxianhong multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues
AT wismeijerdaniel multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues
AT sunping multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues
AT wangjingxiao multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues
AT wugang multivariatelinearregressionanalysistoidentifygeneralfactorsforquantitativepredictionsofimplantstabilityquotientvalues