Cargando…

A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme

In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qihua, Bai, Hongmin, Chen, Yinsheng, Sun, Qiuchang, Liu, Lei, Zhou, Sijie, Wang, Guoliang, Liang, Chaofeng, Li, Zhi-Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662697/
https://www.ncbi.nlm.nih.gov/pubmed/29085044
http://dx.doi.org/10.1038/s41598-017-14753-7
_version_ 1783274684694921216
author Li, Qihua
Bai, Hongmin
Chen, Yinsheng
Sun, Qiuchang
Liu, Lei
Zhou, Sijie
Wang, Guoliang
Liang, Chaofeng
Li, Zhi-Cheng
author_facet Li, Qihua
Bai, Hongmin
Chen, Yinsheng
Sun, Qiuchang
Liu, Lei
Zhou, Sijie
Wang, Guoliang
Liang, Chaofeng
Li, Zhi-Cheng
author_sort Li, Qihua
collection PubMed
description In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this study, 45792 multiregional radiomics features were automatically extracted from multi-modality MR images with different voxel sizes, quantization methods, and gray levels. The feature reproducibility and prognostic performance were assessed. Multiparametric and fixed-parameter radiomics signatures were constructed based on a training cohort (60 patients). In an independent validation cohort (32 patients), the multiparametric signature achieved better performance for OS prediction (C-Index = 0.705, 95% CI: 0.672, 0.738) and significant stratification of patients into high- and low-risk groups (P = 0.0040, HR = 3.29, 95% CI: 1.40, 7.70), which outperformed the fixed-parameter signatures and conventional factors such as age, Karnofsky Performance Score and tumor volume. This study demonstrated that voxel size, quantization method and gray level had influence on reproducibility and prognosis of radiomics features for GBM OS prediction. An automatic method to determine the optimal parameter settings was provided. It indicated that multiparametric radiomics signature had the potential of offering better prognostic performance than fixed-parameter signatures.
format Online
Article
Text
id pubmed-5662697
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56626972017-11-08 A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme Li, Qihua Bai, Hongmin Chen, Yinsheng Sun, Qiuchang Liu, Lei Zhou, Sijie Wang, Guoliang Liang, Chaofeng Li, Zhi-Cheng Sci Rep Article In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this study, 45792 multiregional radiomics features were automatically extracted from multi-modality MR images with different voxel sizes, quantization methods, and gray levels. The feature reproducibility and prognostic performance were assessed. Multiparametric and fixed-parameter radiomics signatures were constructed based on a training cohort (60 patients). In an independent validation cohort (32 patients), the multiparametric signature achieved better performance for OS prediction (C-Index = 0.705, 95% CI: 0.672, 0.738) and significant stratification of patients into high- and low-risk groups (P = 0.0040, HR = 3.29, 95% CI: 1.40, 7.70), which outperformed the fixed-parameter signatures and conventional factors such as age, Karnofsky Performance Score and tumor volume. This study demonstrated that voxel size, quantization method and gray level had influence on reproducibility and prognosis of radiomics features for GBM OS prediction. An automatic method to determine the optimal parameter settings was provided. It indicated that multiparametric radiomics signature had the potential of offering better prognostic performance than fixed-parameter signatures. Nature Publishing Group UK 2017-10-30 /pmc/articles/PMC5662697/ /pubmed/29085044 http://dx.doi.org/10.1038/s41598-017-14753-7 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Qihua
Bai, Hongmin
Chen, Yinsheng
Sun, Qiuchang
Liu, Lei
Zhou, Sijie
Wang, Guoliang
Liang, Chaofeng
Li, Zhi-Cheng
A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
title A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
title_full A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
title_fullStr A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
title_full_unstemmed A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
title_short A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
title_sort fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662697/
https://www.ncbi.nlm.nih.gov/pubmed/29085044
http://dx.doi.org/10.1038/s41598-017-14753-7
work_keys_str_mv AT liqihua afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT baihongmin afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT chenyinsheng afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT sunqiuchang afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT liulei afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT zhousijie afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT wangguoliang afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT liangchaofeng afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT lizhicheng afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT liqihua fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT baihongmin fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT chenyinsheng fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT sunqiuchang fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT liulei fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT zhousijie fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT wangguoliang fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT liangchaofeng fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme
AT lizhicheng fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme