Cargando…
A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this stud...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662697/ https://www.ncbi.nlm.nih.gov/pubmed/29085044 http://dx.doi.org/10.1038/s41598-017-14753-7 |
_version_ | 1783274684694921216 |
---|---|
author | Li, Qihua Bai, Hongmin Chen, Yinsheng Sun, Qiuchang Liu, Lei Zhou, Sijie Wang, Guoliang Liang, Chaofeng Li, Zhi-Cheng |
author_facet | Li, Qihua Bai, Hongmin Chen, Yinsheng Sun, Qiuchang Liu, Lei Zhou, Sijie Wang, Guoliang Liang, Chaofeng Li, Zhi-Cheng |
author_sort | Li, Qihua |
collection | PubMed |
description | In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this study, 45792 multiregional radiomics features were automatically extracted from multi-modality MR images with different voxel sizes, quantization methods, and gray levels. The feature reproducibility and prognostic performance were assessed. Multiparametric and fixed-parameter radiomics signatures were constructed based on a training cohort (60 patients). In an independent validation cohort (32 patients), the multiparametric signature achieved better performance for OS prediction (C-Index = 0.705, 95% CI: 0.672, 0.738) and significant stratification of patients into high- and low-risk groups (P = 0.0040, HR = 3.29, 95% CI: 1.40, 7.70), which outperformed the fixed-parameter signatures and conventional factors such as age, Karnofsky Performance Score and tumor volume. This study demonstrated that voxel size, quantization method and gray level had influence on reproducibility and prognosis of radiomics features for GBM OS prediction. An automatic method to determine the optimal parameter settings was provided. It indicated that multiparametric radiomics signature had the potential of offering better prognostic performance than fixed-parameter signatures. |
format | Online Article Text |
id | pubmed-5662697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56626972017-11-08 A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme Li, Qihua Bai, Hongmin Chen, Yinsheng Sun, Qiuchang Liu, Lei Zhou, Sijie Wang, Guoliang Liang, Chaofeng Li, Zhi-Cheng Sci Rep Article In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this study, 45792 multiregional radiomics features were automatically extracted from multi-modality MR images with different voxel sizes, quantization methods, and gray levels. The feature reproducibility and prognostic performance were assessed. Multiparametric and fixed-parameter radiomics signatures were constructed based on a training cohort (60 patients). In an independent validation cohort (32 patients), the multiparametric signature achieved better performance for OS prediction (C-Index = 0.705, 95% CI: 0.672, 0.738) and significant stratification of patients into high- and low-risk groups (P = 0.0040, HR = 3.29, 95% CI: 1.40, 7.70), which outperformed the fixed-parameter signatures and conventional factors such as age, Karnofsky Performance Score and tumor volume. This study demonstrated that voxel size, quantization method and gray level had influence on reproducibility and prognosis of radiomics features for GBM OS prediction. An automatic method to determine the optimal parameter settings was provided. It indicated that multiparametric radiomics signature had the potential of offering better prognostic performance than fixed-parameter signatures. Nature Publishing Group UK 2017-10-30 /pmc/articles/PMC5662697/ /pubmed/29085044 http://dx.doi.org/10.1038/s41598-017-14753-7 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Qihua Bai, Hongmin Chen, Yinsheng Sun, Qiuchang Liu, Lei Zhou, Sijie Wang, Guoliang Liang, Chaofeng Li, Zhi-Cheng A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme |
title | A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme |
title_full | A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme |
title_fullStr | A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme |
title_full_unstemmed | A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme |
title_short | A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme |
title_sort | fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662697/ https://www.ncbi.nlm.nih.gov/pubmed/29085044 http://dx.doi.org/10.1038/s41598-017-14753-7 |
work_keys_str_mv | AT liqihua afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT baihongmin afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT chenyinsheng afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT sunqiuchang afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT liulei afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT zhousijie afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT wangguoliang afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT liangchaofeng afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT lizhicheng afullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT liqihua fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT baihongmin fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT chenyinsheng fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT sunqiuchang fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT liulei fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT zhousijie fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT wangguoliang fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT liangchaofeng fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme AT lizhicheng fullyautomaticmultiparametricradiomicsmodeltowardsreproducibleandprognosticimagingsignatureforpredictionofoverallsurvivalinglioblastomamultiforme |